

Failure of Notched Laminates Under Out-of-Plane Bending, Phase VIII Spring 2015

Mitchell Daniels, Levi Suryan, & John P. Parmigiani Oregon State University

Out-of-Plane Shear Mode III Bending

Principal Investigators & Researchers

- John Parmigiani (PI); OSU faculty
- M. Daniels, L. Suryan; OSU grad students
- FAA Technical Monitor
 - Curt Davies
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Gerry Mabson, Boeing (technical advisor)
 - Tom Walker, NSE Composites (technical advisor)

Phase I (2007-08)

• Out-of-plane bending experiments w/composite plates

Project Overview

- Abaqus modeling with progressive damage
- Phase II (2008-09)
 - Abaqus modeling with buckling delamination added
 - Sensitivity study of (generic) material property values
- Phase III (2009-10)
 - Abaqus modeling w/ more delamination interfaces

Phase IV (2010-11)

- Further study of additional delamination interfaces
- Feasibility of Abaqus/Explicit and XFEM for future work

Project Overview

- Sensitivity study using Boeing mat' I property values
- Phase V (2011-12)
 - Out-of-plane shear (mode III) experiments
 - Evaluate the Abaqus plug-in Helius for out-of-plane bending
- Phase VI (2012-13)
 - Out-of-plane shear modeling with Abaqus Standard
 - Evaluation of plug-in Helius: MCT for out-of-plane shear
 - Out-of-plane shear modeling with Abaqus Explicit

Phase VII (2013-14)

- Evaluation of solid vs. shell elements in modeling
- Comprehensive report on Phase VI work for Boeing

Project Overview

- Improvement to Abaqus Explicit models
- Explore damage softening parameters in Helius: MCT
- Explore possible inaccuracies in material properties
- Phase VIII (2014-15)
 - Explore significance of damage propagation material properties, i.e. when do energy parameters matter?
 - Begin work on modeling matrix compression damage propagation. Likely topic for future work

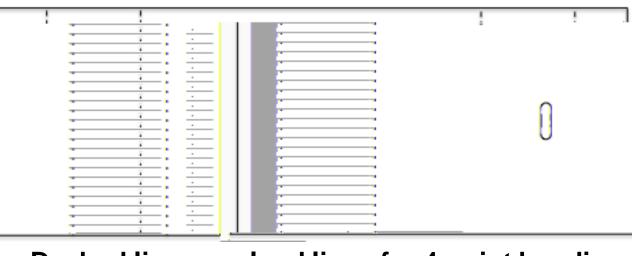
 Review of out-of-plane bending and out-of-plane shear experiments and modeling

Today's

- Significance of damage propagation material properties (energies)
- Literature review of modeling matrix compression damage propagation

Today's Topics of

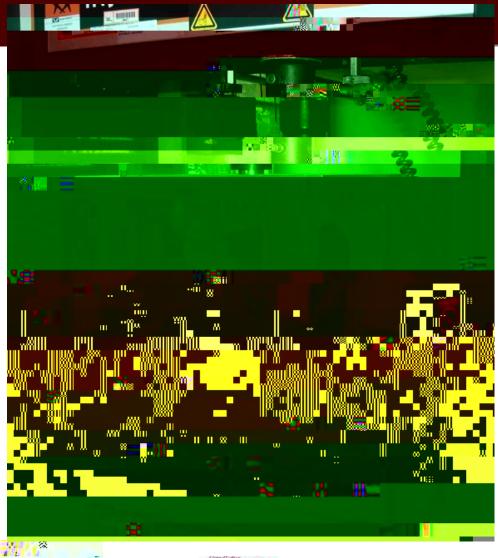
- Review of out-of-plane bending and out-of-plane shear experiments and modeling
- Significance of damage propagation material properties (energies)
- Literature review of modeling matrix compression damage propagation



Due to a need to understand its effects and a lack of useful information in the literature, out-of-plane bending loading was investigated

 Specimens: Center-notched carbon fiber panels having 20 ply and 40 ply layups with 10%, 30%, and 50% zero-degree plies

Dashed lines are load lines for 4-point bending

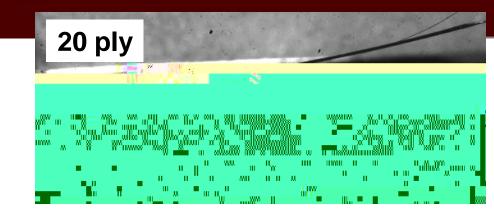


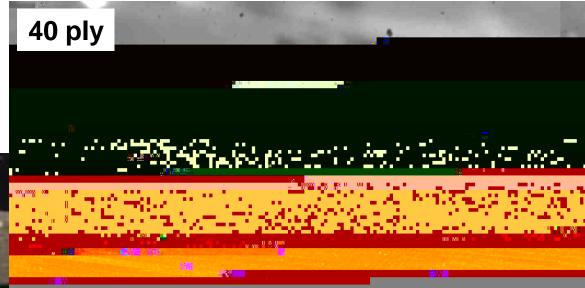
1 8 M

Review: Out-of-Plane Bending

Panels were fabricated by Boeing and tested at OSU

- Applied load versus crosshead displacement data was collected
- Results showed that
 - Initially load increased with displacement
 - As panels became damaged rate of increase decreased
 - Eventually, accumulated damage caused load to decrease with displacement
- Key parameter was the maximum load the panel was able to support




Review: Out-of-Plane Bending

specimens showed that

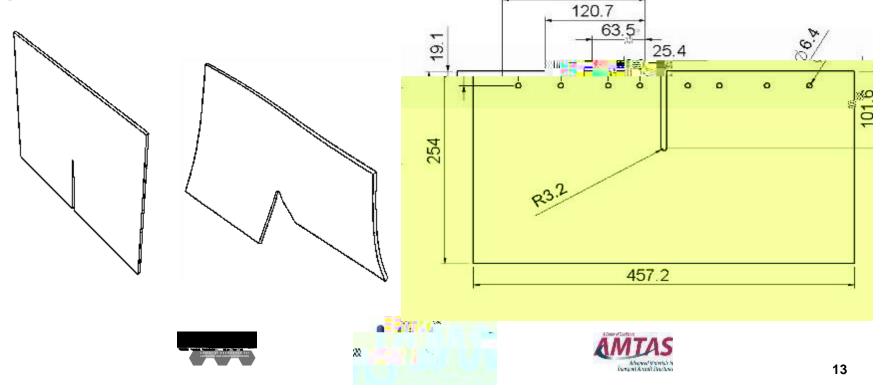
- 20-ply panels failed by local damage
- 40-ply panels failed by local damage and also by ply delamination
- Finite element models were created to predict damage

18 11

40 ply

Finite element models for out-of-plane bending

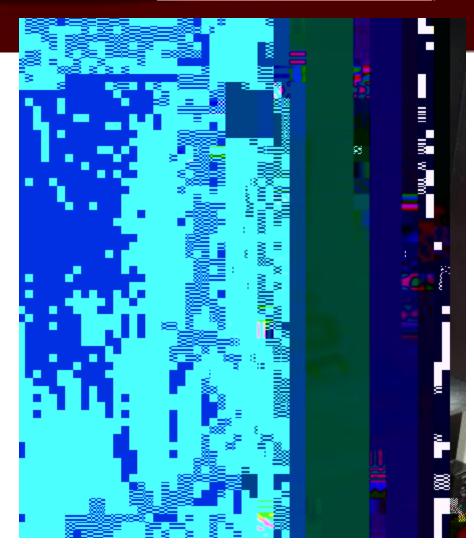
- Used Abaqus/Standard with Hashin progressive damage model
- The need to model multiple plies, to use Hashin in Abaqus, and to include delamination interfaces (VCCT) resulted in the use of continuum shell elements
- Finite element results were compared to experiments using maximum load
- Excellent results were obtained with model calculations agreeing with experimental measurements to **within 10% for all layups**



18 M

18 11

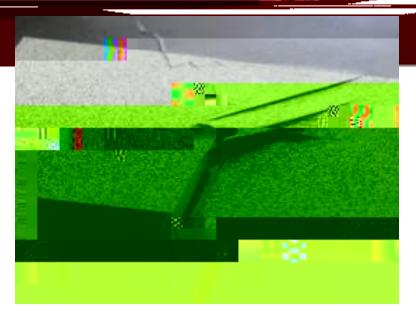
Based on the success of the out-of-plane bending study, attention was shifted to out-of-plane shear.

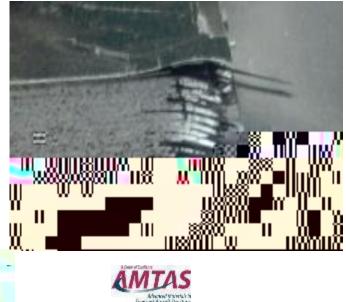

 Specimens: Edge-notched carbon fiber panels having 20 ply and 40 ply layups with 10%, 30%, and 50% zero-degree plies

Review: Out-of-Plane Shear

Panels were fabricated by Boeing and tested at OSU

- Collected data
 - Load vs. Displacement
 - DIC-measured strain fields
- Key parameters
 - Maximum load
 - Notch-tip strain





Review: Out-of-Plane Shear

specimens showed that damage concentrated at the notch tip

- Finite element models were created to predict damage
 - Match maximum load
 - Match notch-tip strain fields

Finite element models for out-of-plane shear

• Used same approach as with out-of-plane bending

Modeling approach worked better for out-of-plane bending than for out-of-plane shear

- Agreement between experimentally-measured and FEAcalculated maximum loads
 - Within 10% for bending
 - Within 25% for shear
- Also large differences between experimentally-measured and FEA-calculated notch-tip strain fields
- Why?

• Out-of-plane shear i

Out-of-plane shear is a more complicated than out-of-plane bending

• Under out-of-plane shear, the panel experiences out-of-plane applied loading, and significant out-of-plane internal loading at the notch tip

The goal of the out-of-plane loading study has been to develop effective

finite element models, validated by experiments, to predict response using **the built-in features of Abaqus.** The development of custom methods has not been part of the statement of work.

- In the case of out-of-plane bending, this appears to work quite well
- In the case of out-of-plane shear, the inability to capture out-of-plane normal effects appears to be a limiting factor
- Over the recent phases, we have made a very thorough evaluation of the built-in capabilities of Abaqus/Standard, Explicit, and the Abaqus plug-in, Helius:MCT
- It is our conclusion that the results we are obtaining for out-of-plane shear are the **best that can be obtained** using the built-in features of Abaqus.

1 8 M

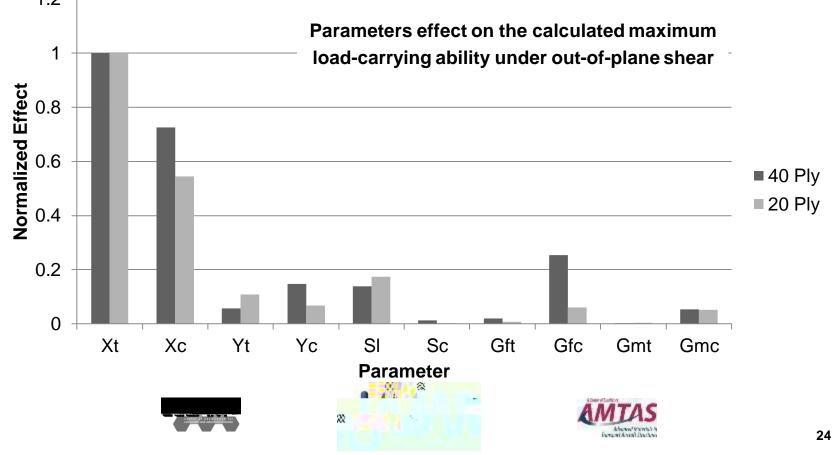
Today's Topics of

- Review of out-of-plane bending and out-of-plane shear experiments and modeling
- Significance of damage propagation material properties (energies)
- Literature review of modeling matrix compression damage propagation

Energy Sensitivity Study Goals and Motivations

Intuitively, one would expect fracture energy parameters to be significant in determining maximum load since extensive damage occurs during panel loading

- The goal of the work presented here is to determine when/how damage progression energies are significant
- This will improve the understanding of the effect of damage progression parameters in models
- Also, if one understands when energies are significant, one can devise effective methods for their measurement (It is currently difficult to accurately experimentally measure the energy parameters)



Energy Sensitivity Studies: Results

Sensitivity studies were conducted for out-of-plane bending and out-of-plane shear

- Out-of-plane bending showed only the case of all-90° plies to have significant energy parameters, Gmt and Gmc, other layups did not show energies to be significant.
- Results for out-of-plane shear, shown below normalized, indicated Gfc was significant for the 40-ply layups, not so for the 20-ply layups

Interpretation of Results

18 m

Today's Topics of

- Review of out-of-plane bending and out-of-plane shear experiments and modeling
- Significance of damage propagation material properties (energies)
- Literature review of modeling matrix compression damage propagation

Literature review of modeling matrix compression-damage propagation

- Fiber compression damage propagation
 - Fiber micro-buckling is a common failure mode
 - Matrix properties and mechanical response contribute to the occurrence of micro-buckling
 - Papers in this area are a source of models for matrix behavior
 Matrix plasticity response under compression
 Matrix response under shear
- Determination of matrix compressive energy-release rate
 - Model the propagation of compressive damage in the matrix as a mode II crack in the 90 $^\circ$ layers
 - Calculate energy release rates

Matrix tension damage propagation

