

Factors Affecting Qualification/Certification - Surface Integrity of Additively Manufactured Ti-6AI-4V Parts

Background

L-PBF Ti-6Al-4V

Background

Challenge

	As-t	ouilt	Half-polished		
Surface texture parameters	Line	Area	Line	Area	
Arithmetical mean height (Raor Sa)	18.8 µm	19.8 µm	9.0 µm	11.6 µm	
Root mean square deviation (Ropr Sq)	23.2 µm	24.5 µm	11.0 µm	14.0 µm	
Maximum profile peak height (Rpor Sp)	62.8 µm	111.8 µm	15.5 µm	31.0 µm	
Maximum profile valley depth (Rvor Sv)	58.7 µm	87.7 μm	35.2 µm	56.7 µm	

8X |

f Although standard surface parameters fouilts and halfpolished specimens differ by almost a factor of two, fatigue lives of halfolished specimens did not improve

f Standard surface parameterrial not capture the effect of surface texture on the fatigue behavior of AM p

Challenge

f The applicability of different notestructive inspection (NDI) techniques to measure the surface texture of parts has not been thoroughly studied

8X |

f While xray computed tomography (XCT) can capture surface texture and subsurface volumetric defects to use and the resolution may not be adequate

f Depending on the measurement technique employed, the calculated values of standard surface parameters

f Objective: Factors Affecting Qualification/Certificationertif

- *f* Approach: Four steps are taken,
 - I. Explore the effect of key process variables and/opposessing on surface and rearrange conditions
 - II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and **seria**ce
 - III. Determine the combined effect of surface and sour farce defects on tensile behavior and fatigue life
 - IV. Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Task List

- TASK 1: Literature Review & Design of Experiment (DoE)
 - 1.1. Literature review
 - 1.2. DoE
- TASK 2: Fabrication & Surface Treatments of Specimens
 - 2.1. Fabrication of specimens with recommended infill parameters
 - 2.2. Fabication of specimens with recommended contour parameters
 - 2.3. Surfacteeatments of specimens
- TASK 3: NDI
 - 3.1. Digital/optical microscope

3.2.XCT

- 3.3. Florescerptenetrantnspection
- TASK 4: Mechanical Testing & Fractography
 - 4.1. Tensile & fatigue tests
 - 4.2. Fractography
- TASK 5: Data Analysis & Modelling
 - 5.1. Effectiveness of NDI techniques to detect surface of ace critical anomalies
 - 5.2. Surface/nessurface defect featuresensile behavior correlation
 - 5.3. Surface/nessurface defect feature satigue life correlation
 - 5.4. Representative surface metrics for the tensile and fatigue behavior of AM parts
- TASK 6: Final Report

f Objective: Factors Affecting Qualification/Certificati

f Approach: Four steps are taken,

I. Explore the effect of key process variables and/or post

8X |

Results: Surface Texture of XCT Coupons

f Coupon without contour resultied deepessurface valleys

f Infill process parameters (i.e., KH and LoF) did not significantly affect Sa and Sv values

13

Results: Selection of Process Parameters

Geometry	Orientation	Contour	Infill	Sa (µm)	Sv (µm)	Surface Treatment
Solid	Vertical	No contour	Default	19	135	No
Solid	Vertical	Order of contours	Default	20	74	No
Solid	Vertical	Order of contours	Default	20	70	No
Solid	Vertical	Order of contours	Default	19	76	No
Solid	Vertical	1 contour	Default	20	88	No
Solid	Vertical	1 contour	Default	17	75	No
Solid	Vertical	Different offsets	Default	21	92	No
Solid	Vertical	Different offsets	Default	17	70	No
Solid	Vertical	Default	KH	19	79	No
Solid	Vertical	Default	KH	21	83	No
Solid	Vertical	Default	LoF	21	75	No
Solid	Vertical	Default	LoF	18	62	No
Solid	Vertical	Default	LoF	20	93	No
Solid	Vertical	Default	Default	21	81	No

Note: Greenshading indicates selected process parameters for fabrication of tensile and fatigue specimens

f Reported Sa and Sv values were obtained using SWLI

- **f** Objective: Factors Affecting Qualification/Certification/Gurface Integrity of Additively Manufacture6/Alii/4V Parts
- *f* Approach: Four steps are taken,
 - I. Explore the effect of key process variables and/opposessing on surface and regarder conditions
 - II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and section
 - III. Determine the combined effect of surface and surface defects on tensile behavior and fatigue life
 - IV. Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Overview of NDI Techniques

Results: Surface Texture from the Matching Areas

f XCT surface topography with overhang structures showed similar results to other techniques

f Dektak and Keyence showed lower roughness values

Dallala	
	· A HE HUNDER AND A HUSS AND A MORE AND
的人的在于这个人的生产的人的是我们的是一些。 为了这些人的是我们的是一些人们的人,可能是一些人们的人。	

- **f** Objective: Factors Affecting Qualification/Certification/Gurface Integrity of Additively Manufacture6/Alii/4V Parts
- *f* Approach: Four steps are taken,
 - I. Explore the effect of key process variables and/opposessing on surface and regarder conditions
 - II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and-sectiace
 - III. Determine the combined effect of surface and sour farce defects on tensile behavior and fatigue life
 - IV. Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Summary

f Variation in infill process parameters did not affect surface texture values

- f Coupons without contour exhibited deepest surface valleys
- *f* In general, Dektak and Keyence showed lower surface texture values compared to the SWLI and XCT

32

f The surface texture values obtained from the XCT were dependent on the specific method used for proraw data

Thank you for your attention !

f National Center for Additive Manufacturing Excellence (NCAME)

8X |