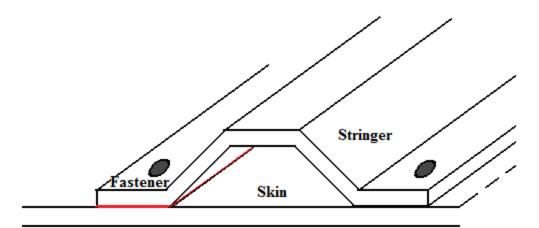
Disbond/Delamination Arrest Features in Aircraft Composite Structures

2013 Technical Review

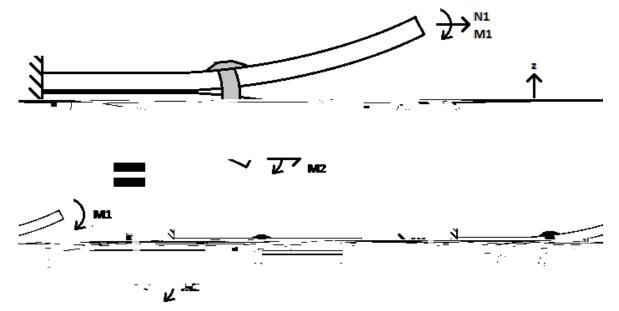
Kuen Lin, Eric Cheung, Wendy Liu, Luke Richard William E. Boeing Department of Aeronautics and Astronautics University of Washington April 10, 2013


Project Information

- Principal Investigator and Researchers (UW)
 - Prof. Kuen Y. Lin (PI)
 - Eric Cheung (Ph.D. student)
 - Wendy Liu (MS student)
 - Luke Richard (MS student)
- FAA Technical Monitor
 - Lynn Pham, Curtis Davies
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Boeing: Marc Piehl, Gerald Mabson, Eric Cregger, Matthew Dilligan (All from BR&T)
 - Toray: Kenichi Yoshioka, Don Lee, Felix Nguyen

Background

- Motivation and Key Issues
 - Delamination is one of the key issues for laminated and "bonded" composite structures
- Objectives
 - To understand the effectiveness of delamination/disbond arrest features
 - To develop analysis tools for design and optimization
- Approach
 - Construct FEM models in ABAQUS with VCCT
 - Perform sensitivity studies on fastener effectiveness
 - Conduct coupon-level experiments using novel specimens
 - Develop analytical tools validated by FEM and test


Crack Arrest Mechanism by Fastener

Analytical Model Development

- Model is composed of a beam-column part and a truss part
- Fastener is modeled by a <u>tension spring</u> which works with the beam-columns in bending; and a joint flexibility spring which works with the trusses
- Crack tip ERR is obtained using VCCT
- Friction and joint/hole clearance is also modeled

Beam-Column

- Polynomial shape function
 - W_i X _{i,j} X^j j 0
- Beam-Column energy

- Truss
- Polynomial shape function

 $\mathbf{U}_{\mathbf{i}} \mathbf{X} = \begin{bmatrix} \mathbf{n} & \mathbf{m} \\ \mathbf{i}, \mathbf{j} & \mathbf{X}^{\mathbf{j}} & \mathbf{k} & \mathbf{n} \end{bmatrix} \begin{bmatrix} \mathbf{n} & \mathbf{m} \\ \mathbf{k} & \mathbf{k} & \mathbf{k} \end{bmatrix}$

 $U_{bc,i} = \frac{1}{2} EI_{L_{i}}^{L_{2}} \frac{d^{2}w_{i}}{dx^{2}} dx_{i}^{2} - N_{k}^{\frac{1}{2}} \frac{dw_{i}}{dx}^{2} dx = U_{truss,i} - \frac{1}{2} AE_{L_{i}}^{L_{2}} \frac{du_{i}}{dx}^{2} dx$

Fastener/Contact/Bond Springs

$$\mathsf{U} \quad \frac{1}{2}\mathsf{k} \; \mathsf{u} \; \mathsf{u}_{\mathsf{j}}^{2}$$

Effects of G $_{IC}/G_{IIC}$ on Crack Propagation

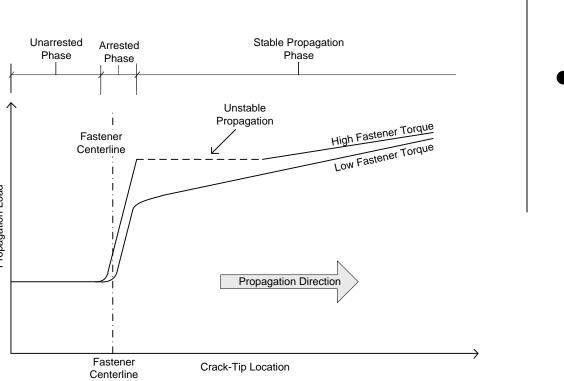
fAssume G_{IC}=constant, but varying G_{IIC}

G _{IC} (Ib/in)	G _{IIC} (lb/in)	Ratio
1.5	3	0.500
1.5	5	0.300
1.5	7	0.214
1.5	9	0.167
1.5	12	0.125

Effects of G $_{IC}/G_{IIC}$ Ratios (Single Fastener)

2-Plate Single Fastener Specimen

2-


2-Plate Single Fastener Specimen:

 $(0/-45/0_2/90/45/0_2/-45/90/45/0)_{s}/crack/(0/-45/0_2/90/45/0_2/-45/90/45/0)_{s}$

- CLT $E_x = 12.00 \times 10^6 \text{ psi}$
- Plain Strain $E_x = 12.56 \times 10^6$ psi
- Strain Gauge $E_x = 12.00 \times 10^6$ psi

Arrest Capability vs. Fastener Torque

Arrest Mechanisms

2-Plate Two -Fastener Specimen

- ((0/45/90/-45)₆/Crack)_S
- Specimen width 1.25"
- T-800S (350°F cure for 2.5hrs)
- 0.25" diameter Ti fasteners, 8D spacing
- Fasteners installed at 40 in-lb (half-torque) Ftenerd

• F

2-Plate Two -Fastener Specimen

Preliminary Test Results

- $((45^{\circ}/0^{\circ}/-45^{\circ}/90^{\circ})_3)_s$, ABAQUS CPE4R Element
- •

Future Tasks

- Finite Element Analysis
 - Design viable 2-fastener specimens
 - Validate model with test results
 - Perform parametric studies on select factors
- Experiment
 - Design viable 2-fastener specimens
 - Manufacture and conduct tests
 - Focus on key factors such as fastener parameters, friction, etc.

Looking Forward

- Benefit to Aviation
 - Tackle one of the main weakness of laminate composite structures
 - Reduce risks (analysis, schedule/cost, re-design, etc.) associated with delamination/disbond mode of failure in large integrated structures
 - Enhance structural safety by building a methodology for designing fail-safe co-cured/bonded structures
- Future needs
 - Initiate research areas core to the interlaminar mode of failure, e.g. friction, fastener clamp-up
 - Industry/regulatory agency inputs related to the application, design, and certification of this type of crack arrest features

End of Presentation

Thank you!